Exercise 2

In Exercises 1-26, solve the following Volterra integral equations by using the Adomian decomposition method:

$$
u(x)=6 x-x^{3}+\int_{0}^{x}(x-t) u(t) d t
$$

Solution

Assume that $u(x)$ can be decomposed into an infinite number of components.

$$
u(x)=\sum_{n=0}^{\infty} u_{n}(x)
$$

Substitute this series into the integral equation.

$$
\begin{aligned}
& \sum_{n=0}^{\infty} u_{n}(x)=6 x-x^{3}+\int_{0}^{x}(x-t) \sum_{n=0}^{\infty} u_{n}(t) d t \\
& u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots=6 x-x^{3}+\int_{0}^{x}(x-t)\left[u_{0}(t)+u_{1}(t)+\cdots\right] d t \\
& u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots=\underbrace{6 x-x^{3}}_{u_{0}(x)}+\underbrace{\int_{0}^{x}(x-t) u_{0}(t) d t}_{u_{1}(x)}+\underbrace{\int_{0}^{x}(x-t) u_{1}(t) d t}_{u_{2}(x)}+\cdots
\end{aligned}
$$

If we set $u_{0}(x)$ equal to the function outside the integral, then the rest of the components can be deduced in a recursive manner. After enough terms are written, a pattern can be noticed, allowing us to write a general formula for $u_{n}(x)$. Note that the $(x-t)$ in the integrand essentially means that we integrate the function next to it twice.

$$
\begin{aligned}
u_{0}(x) & =6 x-x^{3} \\
u_{1}(x) & =\int_{0}^{x}(x-t) u_{0}(t) d t=\int_{0}^{x}(x-t)\left(6 t-t^{3}\right) d t=\frac{6 x^{3}}{3 \cdot 2}-\frac{x^{5}}{5 \cdot 4} \\
u_{2}(x) & =\int_{0}^{x}(x-t) u_{1}(t) d t=\int_{0}^{x}(x-t)\left(t^{3}-\frac{t^{5}}{20}\right) d t=\frac{6 x^{5}}{5 \cdot 4 \cdot 3 \cdot 2}-\frac{x^{7}}{7 \cdot 6 \cdot 5 \cdot 4} \\
u_{3}(x) & =\int_{0}^{x}(x-t) u_{2}(t) d t=\int_{0}^{x}(x-t)\left(\frac{t^{5}}{20}-\frac{t^{7}}{840}\right) d t=\frac{6 x^{7}}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}-\frac{x^{9}}{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4} \\
& \vdots \\
u_{n}(x) & =\int_{0}^{x}(x-t) u_{n-1}(t) d t=\frac{6 x^{2 n+1}}{(2 n+1)!}-\frac{6 x^{2 n+3}}{(2 n+3)!}
\end{aligned}
$$

The series for $u(x)$ is telescoping because the second term of every component cancels with the first term of the following component. Only two terms remain in the series: $6 x$ and the "last" term. Therefore,

$$
u(x)=\sum_{n=0}^{\infty}\left[\frac{6 x^{2 n+1}}{(2 n+1)!}-\frac{6 x^{2 n+3}}{(2 n+3)!}\right]=6 x-\underbrace{\lim _{n \rightarrow \infty} \frac{6 x^{2 n+3}}{(2 n+3)!}}_{=0}=6 x .
$$

